Open Access
Issue |
Nat. Sci. Soc.
Volume 31, Number 3, Juillet/Septembre 2023
|
|
---|---|---|
Page(s) | 325 - 346 | |
DOI | https://doi.org/10.1051/nss/2024003 | |
Published online | 08 April 2024 |
- Albris K., Lauta K.C., Raju E., 2020. Disaster knowledge gaps: exploring the interface between science and policy for disaster risk reduction in Europe, International Journal of Disaster Risk Science, 11, 1-12, https://doi.org/10.1007/s13753-020-00250-5. [CrossRef] [Google Scholar]
- Altaweel M., Virapongse A., Griffith D., Alessa L., Kliskey A., 2015. A typology for complex social-ecological systems in mountain communities, Sustainability: Science, Practice and Policy, 11, 1-13, https://doi.org/10.1080/15487733.2015.11908142. [CrossRef] [Google Scholar]
- ANR (Agence nationale de la recherche), 2021. Plan d’action 2022, version 1.0, Paris, ANR, https://anr.fr/fileadmin/documents/2021/PA_ANR_2022_-_V1.1_5.pdf. [Google Scholar]
- Aubert M.-H., Besse G., Bellec P., 2017. Revue des politiques du ministère au regard des objectifs de développement durable (Agenda 2030). Rapport n° 010982-01, Paris, CGEDD (Conseil général de l’environnement et du développement durable), https://medias.vie-publique.fr/data_storage_s3/rapport/pdf/184000082.pdf. [Google Scholar]
- Aven T., 2016. The reconceptualization of risk, in Burgess A., Alemanno A., Zinn J.O. (Eds), Routledge handbook of risk studies, Abingdon/New York, Routledge. [Google Scholar]
- Bechler A., Bel L., Vrac M., 2015. Conditional simulations of the extremal t process: application to fields of extreme precipitation, Spatial Statistics, 12, 109-127, https://doi.org/10.1016/j.spasta.2015.04.003. [CrossRef] [MathSciNet] [Google Scholar]
- Berger J.O., 1985. Statistical decision theory and bayesian analysis, New York, Springer. [CrossRef] [Google Scholar]
- Boudia S., Jas N. (Eds), 2013. Toxicants, health and regulation since 1945, London/New York, Pickering & Chatto. [Google Scholar]
- Boué G., Cummins E., Guillou S., Antignac J.-P., Le Bizec B., Membré J.-M., 2017. Development and application of a probabilistic risk-benefit assessment model for infant feeding integrating microbiological, nutritional and chemical components, Risk Analysis, 37, 12, 2360-2388, https://doi.org/10.1111/risa.12792. [CrossRef] [PubMed] [Google Scholar]
- Boué G., Wasiewska L.A., Cummins E., Antignac J.-P., Le Bizec B., Guillou S., Membré J.-M., 2018. Development of a Cryptosporidium-arsenic multi-risk assessment model for infant formula prepared with tap water in France, Food Research International, 108, 558-570, https://doi.org/10.1016/j.foodres.2018.03.054. [CrossRef] [Google Scholar]
- Bourotte M., Allard D., Porcu E., 2016. A flexible class of non-separable cross-covariance functions for multivariate space-time data, Spatial Statistics, 18, 125-146, https://doi.org/10.1016/j.spasta.2016.02.004. [CrossRef] [MathSciNet] [Google Scholar]
- Bréda N., Huc R., Granier A., Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Annals of Forest Science, 63, 6, 625-644, https://doi.org/10.1051/forest:2006042. [CrossRef] [EDP Sciences] [Google Scholar]
- Brès A. (Ed.), 2020. Défi 5. Modélisation intégrée du système Terre pour l’étude des risques environnementaux et de la vulnérabilité des socio-écosystèmes, in Brès A. (Ed.), Prospective 2020-2025 en sciences de la planète et de l’Univers. Synthèse des ateliers et du colloque de clôture de l’exercice de prospective transverse INSU, Paris, CNRS/INSU (Institut national des sciences de l’Univers), 39-47, https://www.insu.cnrs.fr/sites/institut_insu/files/ressource-file/Prospective%20Sciences%20de%20la%20plan%C3%A8te%20et%20de%20l%27Univers-light.pdf. [Google Scholar]
- BRGM (Bureau de recherches géologiques et minières), 2019. Stratégie scientifique du BRGM. Les grandes orientations de la recherche à 10 ans, Orléans, BRGM, https://www.brgm.fr/fr/identite/strategie-scientifique-brgm. [Google Scholar]
- Brondizio E., Díaz S., Settele J., Ngo H.T. (Eds), 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, IPBES, https://doi.org/10.5281/zenodo.3831673. [Google Scholar]
- Caeymaex F., 2007. Risquer, gérer, sécuriser : techniques politiques de la modernité ?, in Kermisch C., Hottois G. (Eds), Techniques et philosophies des risques, Paris, Vrin, 111-122. [Google Scholar]
- Caquet T., Eckert N., Naaim M., Rigolot E., 2020. Les risques naturels, alimentaires et environnementaux. Réflexion prospective interdisciplinaire, Paris, INRAE, https://dx.doi.org/10.17180/8HT2-3X60. [Google Scholar]
- Casajus Valles A., Marin Ferrer M., Poljanšek K., Clark I. (Eds), 2020. Science for disaster risk management 2020. Acting today, protecting tomorrow. Executive summary, Luxembourg, Publications Office of the European Union, https://doi.org/10.2760/919253. [Google Scholar]
- Ceballos G., Ehrlich P.R., Dirzo R., 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines, Proceedings of the National Academy of Sciences, 114, 6089-6096, https://doi.org/10.1073/pnas.1704949114. [CrossRef] [Google Scholar]
- Clark W.C., Munn R.E., 1986. Sustainable development of the biosphere, Cambridge, Cambridge University Press. [Google Scholar]
- CNES (Centre national d’études spatiales), 2019. Séminaire de prospective scientifique, 8-10 octobre, Le Havre, Paris, CNES, https://sciences-techniques.cnes.fr/sites/default/files/drupal/202009/default/st_actes-sps_rapport-complet.pdf. [Google Scholar]
- Cormier B., Batel A., Cachot J., Bégout M.-L., Braunbeck T., Cousin X., Keiter, S.H., 2019. Multi-laboratory hazard assessment of contaminated microplastic particles by means of enhanced fish embryo test with the zebrafish (Danio rerio), Frontiers in Environmental Science, 7, 135, https://doi.org/10.3389/fenvs.2019.00135. [CrossRef] [Google Scholar]
- Council of the European Union, 2016. Urban agenda for the EU. Pact of Amsterdam, Bruxelles, Council of the European Union, https://ec.europa.eu/regional_policy/sources/policy/themes/urban-development/agenda/pact-of-amsterdam.pdf. [Google Scholar]
- Coutellec M.-A., Barata C., 2013. Special issue on long-term ecotoxicological effects: an introduction, Ecotoxicology, 22, 763-766, https://doi.org/10.1007/s10646-013-1092-7. [CrossRef] [PubMed] [Google Scholar]
- Cozzani V., Gubinelli G., Antonioni G., Spadoni G., Zanelli S., 2005. The assessment of risk caused by domino effect in quantitative area risk analysis, Journal of Hazardous Materials, 127, 1-3, 14-30, https://doi.org/10.1016/j.jhazmat.2005.07.003. [CrossRef] [PubMed] [Google Scholar]
- Csilléry K., Kunstler G., Courbaud B., Allard D., Lassègues P., Haslinger K., Gardiner B., 2017. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains, Global Change Biology, 23, 12, 5092-5107, https://doi.org/10.1111/gcb.13773. [CrossRef] [PubMed] [Google Scholar]
- Curt C., 2020. Multirisk: what trends in recent works? A bibliometric analysis, Science of the Total Environment, 142951, https://doi.org/10.1016/j.scitotenv.2020.142951. [Google Scholar]
- Dasgupta P., 2021. The economics of biodiversity: the Dasgupta review. Abridged version, London, HM Treasury. [Google Scholar]
- Deloménie P., Laconde C., 2003. Rapport sur la prévention des risques sanitaires liés aux polluants chroniques. Rapport n° 2003-21, Paris, IGAS (Inspection générale des affaires sociales), https://medias.vie-publique.fr/data_storage_s3/rapport/pdf/034000708.pdf. [Google Scholar]
- Destoumieux-Garzón D., Mavingui P., Boetsch G., Boissier J., Darriet F., Duboz P., Fristch C., Giraudoux P., Le Roux F., Morand S. et al., 2018. The One Health concept: 10 years old and a long road ahead, Frontiers in Veterinary Science, 5, 14, 14, https://doi.org/10.3389/fvets.2018.00014. [CrossRef] [PubMed] [Google Scholar]
- Ducrot V., Teixeira-Alves M., Lopes C., Delignette-Muller M.-L., Charles S., Lagadic L., 2010. Development of partial life-cycle experiments to assess the effects of endocrine disruptors on the freshwater gastropod Lymnaea stagnalis: a case-study with vinclozolin, Ecotoxicology, 19, 1312-1321, https://doi.org/10.1007/s10646-010-0518-8. [CrossRef] [PubMed] [Google Scholar]
- Dupire S., Bourrier F., Monnet J.-M., Bigot S., Borgniet L., Berger F., Curt T., 2016. Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall, Ecological Indicators, 67, 98-107, https://doi.org/10.1016/j.ecolind.2016.02.023. [CrossRef] [Google Scholar]
- Eckert N., Grandjean G., 2020. Risques naturels et environnementaux, quelle organisation de la recherche pour répondre aux enjeux des générations futures ?, France Universités, L’instant recherche, https://franceuniversites.fr/actualite/eclairage-risques-naturels-et-environnementaux-quelle-organisation-de-la-recherche-pour-repondre-aux-enjeux-des-generations-futures/. [Google Scholar]
- Eckert N., Keylock C.J., Bertrand D., Parent E., Faug T., Favier P., Naaim M., 2012. Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions, Cold Regions Science and Technology, 79-80, 1-19, https://doi.org/10.1016/j.coldregions.2012.03.003. [CrossRef] [Google Scholar]
- Eckert N., Rigolot É., Caquet T., Naaim M., Allard D., Erdelenbruch K., Garric J., Gohin A., Giacona F., Lang M., Marette S., Membré J.-M., Mougin C., Reynaud A., Sabatier R., 2023. Les risques environnementaux en 2020 : une feuille de route pour INRAE, Natures Sciences Sociétés, 31, 3, https://doi.org/10.1051/nss/20240004. [CrossRef] [EDP Sciences] [Google Scholar]
- Faivre N., Sgobbi A., Happaerts S., Raynal J., Schmidt L., 2018. Translating the Sendai Framework into action: the EU approach to ecosystem-based disaster risk reduction, International Journal of Disaster Risk Reduction, 32, 4-10, https://doi.org/10.1016/j.ijdrr.2017.12.015. [CrossRef] [Google Scholar]
- Farvacque M., Eckert N., Bourrier F., Corona C., Lopez-Saez J., Toe D., 2021. Quantile-based individual risk measures for rockfall-prone areas, International Journal of Disaster Risk Reduction, 53, 101932, https://doi.org/10.1016/j.ijdrr.2020.101932. [CrossRef] [Google Scholar]
- Faugères L., 1991. La géo-cindynique, géo-science du risque, Bulletin de l’Association de géographes français, 68, 3, 179-193, https://doi.org/10.3406/bagf.1991.1574. [CrossRef] [Google Scholar]
- FFA, 2019. Baromètre 2019 des risques émergents pour la profession de l’assurance et de la réassurance, Paris, FFA, https://www.franceassureurs.fr/nos-positions/lassurance-qui-protege/deuxieme-edition-du-barometre-des-risques-emergents-pour-assurance/. [Google Scholar]
- Fabiani J.-L., Theys J., 1987. La société vulnérable. Évaluer et maîtriser les risques, Paris, Éditions Rue d’Ulm. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations), WHO (World Health Organization), 1981. Codex Alimentarius commission. Procedural manual, Rome, FAO. [Google Scholar]
- Future Earth, 2020. Risks perceptions report 2020. First edition, Fort Collins, Future Earth, https://futureearth.org/wp-content/uploads/2020/02/RPR_2020_Report.pdf. [Google Scholar]
- Giacona F., Martin B., Eckert N., Desarthe J., 2019. Une méthodologie de la modélisation en géohistoire : de la chronologie (spatialisée) des événements au fonctionnement du système par la mise en correspondance spatiale et temporelle, Physio-Géo. Géographie physique et environnement, 14, 171-199, https://doi.org/10.4000/physio-geo.9186. [Google Scholar]
- Gilard O., Gendreau N., 1998. Inondabilité : une méthode de prévention raisonnable du risque d’inondation pour une gestion mieux intégrée des bassins-versants, Revue des sciences de l’eau/Journal of Water Science, 11, 3, 429-444, https://doi.org/10.7202/705315ar. [Google Scholar]
- Gilbert C., 2003. La fabrique des risques, Cahiers internationaux de sociologie, 114, 1, 55-72, https://doi.org/10.3917/cis.114.0055. [CrossRef] [Google Scholar]
- Guterres A., 2019. Report of the secretary-general on SDG progress 2019. Special edition, New York, United Nations, https://sustainabledevelopment.un.org/content/documents/24978Report_of_the_SG_on_SDG_Progress_2019.pdf. [Google Scholar]
- Handmer J., Stevance A.-S., Rickards L., Nalau J., 2020. Achieving risk reduction across Sendai, Paris and the SDGs. Policy Brief, Paris, International Science Council, https://doi.org/10.25439/rmt.12786734.v1. [Google Scholar]
- Haut Conseil pour le climat, 2021. Renforcer l’atténuation, engager l’adaptation. Un résumé du troisième rapport annuel du Haut Conseil pour le climat, Paris, Haut Conseil pour le climat, https://www.hautconseilclimat.fr/wp-content/uploads/2021/09/HCC_Rapport_GP_2021_web-1.pdf. [Google Scholar]
- Hulme P.E., Bacher S., Kenis M., Kühn I., Pergl J., Pyšek P., Roques A., Vilà M., 2017. Blurring alien introduction pathways risks losing the focus on invasive species policy, Conservation Letters, 10, 2, 265-266, https://doi.org/10.1111/conl.12262. [CrossRef] [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change), 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects [Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C. et al. (Eds)], Cambridge, Cambridge University Press, www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change), 2019a. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.O., Roberts D.C., Zhai P., Slade R., Connors S.L., van Diemen R. et al. (Eds)], Genève, IPCC, www.ipcc.ch/srccl/. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change), 2019b. IPCC special report on the ocean and cryosphere in a changing climate [Pörtner H.O., Roberts D.C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Alegría A., Nicolai M., Okem A. et al. (Eds)], Genève, IPCC, www.ipcc.ch/srocc/. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change), 2021. Climate change 2021. The physical science basis [Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I. et al. (Eds)], Cambridge, Cambridge University Press, https://doi.org/doi:10.1017/9781009157896. [Google Scholar]
- IRSN (Institut de radioprotection et de sûreté nucléaire), 2018. La perception des risques et de la sécurité par les Français. Baromètre IRSN, Les essentiels, https://www.irsn.fr/sites/default/files/documents/irsn/publications/barometre/IRSN_Barometre2018-essentiels.pdf. [Google Scholar]
- IRSN (Institut de radioprotection et de sûreté nucléaire), 2019. Contrat d’objectifs et de performance 2019-2023 entre l’État et l’IRSN, Fontenay-aux-Roses, IRSN, https://www.irsn.fr/FR/IRSN/Gouvernance/Documents/IRSN-COP-2019-2023.pdf. [Google Scholar]
- IRSN (Institut de radioprotection et de sûreté nucléaire), 2021. Baromètre 2022. La perception des risques et de la sécurité par les Français, L’analyse, https://barometre.irsn.fr/barometre2022/barometre2022.pdf. [Google Scholar]
- IUGS (International Union of Geological Sciences), 1997. Quantitative risk assessment for slopes and landslides. The state of the art, in Cruden D.M., Fell R. (Eds), Landslide risk assessment. Proceedings of the international workshop on landslide risk assessment, London/New York, Routledge, 3-12. [Google Scholar]
- Jactel H., Petit J., Desprez-Loustau M.-L., Delzon S., Piou D., Battisti A., Koricheva J., 2012. Drought effects on damage by forest insects and pathogens: a meta-analysis, Global Change Biology, 18, 267-276, https://doi.org/10.1111/j.1365-2486.2011.02512.x. [CrossRef] [Google Scholar]
- Kates R.W., Clark W.C., Corell R., Hall J.M., Jaeger C.C., Lowe I., McCarthy J.J., Schellnhuber H.J., Bolin B., Dickson N.M. et al., 2001, Sustainability science, Science, 292, 5517, 641-642, https://doi.org/10.1126/science.1059386. [CrossRef] [PubMed] [Google Scholar]
- Kleiber F., Vey F., 2017. Indicateurs de la transition écologique vers un développement durable. Comparaisons internationales, Paris, CGEDD (Commissariat général au développement durable), www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-11/Datalab-19-INTEDD-comparaisons-internationales-mai-2017.pdf. [Google Scholar]
- Koch E., 2017. Spatial risk measures and applications to max-stable processes, Extremes, 20, 3, 635-670, https://doi.org/10.1007/s10687-016-0274-0. [CrossRef] [MathSciNet] [Google Scholar]
- Lauta K.C., Albris K., Zuccaro G., Grandjean G. (Eds), 2018. ESPREssO Enhancing risk management capabilities guidelines, Espresso. [Google Scholar]
- Lieutaud A., Devès M.H., Eckert N., Grandjean G., Pateau M., Billière C., 2020. La recherche française sur les risques et catastrophes naturels : bilan d’une décennie de financements de l’Agence nationale de la recherche (ANR) et perspectives d’avenir, Annales des Mines-Responsabilité et environnement, 98, 2, 48-52, https://doi.org/10.3917/re1.098.0048. [CrossRef] [Google Scholar]
- Magnan A.K., Pörtner H.O., Duvat V.K.E., Garschagen M., Guinder V.A., Zommers Z., Hoegh-Guldberg O., Gattuso J.P., 2021. Estimating the global risk of anthropogenic climate change, Nature Climate Change, 11, 879-885, https://doi.org/10.1038/s41558-021-01156-w. [CrossRef] [Google Scholar]
- Meadows D.H., Meadows D.L., Randers J., Behrens W.W., 1972. The limits to growth. A report for the Club of Rome’s project on the predicament of mankind, New York, Universe Books. [Google Scholar]
- Méric J., Pesqueux Y., Solé A., 2009. La « société du risque » : analyse et critique, Paris, Economica. [Google Scholar]
- Météo-France, 2017. 2017-2021. Contrat d’objectifs et de performance de Météo-France, Paris, Météo-France/Ministère de l’Environnement, de l’Énergie et de la Mer, https://meteofrance.fr/sites/meteofrance.fr/files/files/editorial/COP_2017_2021_VF.pdf. [Google Scholar]
- Mysiak J., Castellari S., Kurnik B., Swart R., Pringle P., Schwarze R., Wolters H., Van der Linden P., 2018. Brief communication: strengthening coherence between climate change adaptation and disaster risk reduction, Natural Hazards and Earth System Sciences, 18, 11, 3137-3143, https://doi.org/10.5194/nhess-18-3137-2018. [CrossRef] [Google Scholar]
- Peduzzi P., 2019. The disaster risk, global change, and sustainability nexus, Sustainability, 11, 4, 957, https://doi.org/10.3390/su11040957. [Google Scholar]
- Pescaroli G., Alexander D., 2018. Understanding compound, interconnected, interacting, and cascading risks: a holistic framework, Risk analysis, 38, 11, 2245-2257, https://doi.org/10.1111/risa.13128. [CrossRef] [PubMed] [Google Scholar]
- Pimont F., Fargeon H., Optiz T., Ruffault J., Barbero R., Martin-StPaul N., Rigolot É., Rivière M., Dupuy J.-L., 2021. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood, Ecological Applications, 31, 5, e02316, https://doi.org/10.1002/eap.2316. [CrossRef] [PubMed] [Google Scholar]
- Pinay G., Gascuel C., Ménesguen A., Souchon Y., Le Moal M. (Eds), 2017. Eutrophisation. Manifestations, causes, conséquences et prédictibilité. Synthèse de l’expertise scientifique collective, CNRS/Ifremer/Inra/Irstea, https://archimer.ifremer.fr/doc/00408/51903/52526.pdf. [Google Scholar]
- Poljanšek K., Marin Ferrer M., De Groeve T., Clark I. (Eds), 2017. Science for disaster risk management 2017: knowing better and losing less, Luxembourg, Publications Office of the European Union, https://doi.org/10.2788/842809. [Google Scholar]
- Poljanšek K., Casajus Valles A., Marin Ferrer M., De Jager A., Dottori F., Galbusera L., Garcia Puerta B., Giannopoulos G., Girgin S., Hernandez Ceballos M.A. et al., 2019. Recommendations for national risk assessment for disaster risk management in EU, Luxembourg, Publications Office of the European Union. [Google Scholar]
- Pörtner H.O., Scholes R.J., Agard J., Archer E., Arneth A., Bai X., Barnes D., Burrows M., Chan L., Cheung W.L. et al., 2021. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change, Bonn, IPBES Secretariat, https://doi.org/10.5281/zenodo.4659158. [Google Scholar]
- Probst J.-L., Laggoun F. (Eds), 2018. Prospective. Surfaces et interfaces continentales 2018-2022, Paris, CNRS/INSU (Institut national des sciences de l’univers), https://www.insu.cnrs.fr/sites/institut_insu/files/download-file/Prospective_SIC_2018-2022.pdf. [Google Scholar]
- Reisinger A., Howden M., Vera C., Garschagen M., Hurlbert M., Kreibiehl S., Mach K.J., Mintenbeck K., O’Neill B., Pathak M. et al., 2020. The concept of risk in the IPCC Sixth Assessment Report: a summary of cross Working Group discussions, Genève, IPCC (Intergovernmental Panel on Climate Change), www.ipcc.ch/site/assets/uploads/2021/01/The-concept-of-risk-in-the-IPCC-Sixth-Assessment-Report.pdf. [Google Scholar]
- Renn O., 2008a. Concepts of risk: an interdisciplinary review. Part 1: Disciplinary risk concepts, GAIA, 17, 1, 50-66, https://doi.org/10.14512/gaia.17.1.13. [CrossRef] [Google Scholar]
- Renn O., 2008b. Concepts of risk: an interdisciplinary review. Part 2: Integrative approaches, GAIA, 17, 2, 196-204, https://doi.org/10.14512/gaia.17.2.7. [CrossRef] [Google Scholar]
- Renn O., 2016. Systemic risks: the new kid on the block, Environment: Science and Policy for Sustainable Development, 58, 2, 26-36, https://doi.org/10.1080/00139157.2016.1134019. [CrossRef] [Google Scholar]
- Rockström J., Steffen W., Noone K., Persson Å., Chapin F.S. III., Lambin E., Lenton T.M., Scheffer M., Folke C., Schellnhuber H.J. et al., 2009. A safe operating space for humanity, Nature, 461, 7263, 472-475, https://doi.org/10.1038/461472a. [CrossRef] [PubMed] [Google Scholar]
- Rougé C., Mathias J.-D., Deffuant G., 2013. Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication, Ecological Indicators, 29, 420-433, https://doi.org/10.1016/j.ecolind.2012.12.032. [CrossRef] [Google Scholar]
- Rovenskaya E., Kaplan D., Sizov S., 2021. Strengthening science systems. Thematic report, in Transformations within reach: pathways to a sustainable and resilient world, Laxenbourg/Paris, IIASA (International Institute for Applied Systems Analysis)/ISC (International Science Council), https://pure.iiasa.ac.at/id/eprint/16821/1/Systems.pdf. [Google Scholar]
- Sieg C.H., Linn R.R., Pimont F., Hoffman C.M., McMillin J.D., Winterkamp J., Baggett S., 2017. Fires following bark beetles: factors controlling severity and disturbance interactions in ponderosa pine, Fire Ecology, 13, 3, https://doi.org/10.4996/fireecology.130300123. [Google Scholar]
- Steffen W., Broadgate W., Deutsch L., Gaffney O., Ludwig C., 2015. The trajectory of the Anthropocene: the great acceleration, The Anthropocene Review, 2, 1, 81-98, https://doi.org/10.1177/2053019614564785. [Google Scholar]
- Steffen W., Rockström J., Richardson K., Lenton T.M., Folke C., Liverman D., Summerhayes C.P., Barnosky A.D., Cornell S.E., Crucifix M. et al., 2018. Trajectories of the Earth system in the Anthropocene, Proceedings of the National Academy of Sciences, 115, 33, 8252-8259, https://doi.org/10.1073/pnas.1810141115. [CrossRef] [PubMed] [Google Scholar]
- Turner B.L., Kasperson R.E., Matson P.A., McCarthy J.J., Corell R.W., Christensen L., Eckley N., Kasperson J.X., Luers A., Martello M.L. et al., 2003. A framework for vulnerability analysis in sustainability science, Proceedings of the National Academy of Sciences, 100, 14, 8074-8079, https://doi.org/10.1073/pnas.1231335100. [CrossRef] [PubMed] [Google Scholar]
- United Nations, 2015a. Paris agreement, New York/Genève, United Nations, https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf. [Google Scholar]
- United Nations, 2015b. Transforming our world: the 2030 agenda for sustainable development, New York/ Genève, United Nations, https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf. [Google Scholar]
- United Nations, 2021. Risk-informed development cooperation and its implications for ODA use and allocation. Lessons for the decade of action to deliver the SDGs, New York/Genève, United Nations, https://financing.desa.un.org/sites/default/files/2021-03/2021ODA%20Full%20Study_final.pdf. [Google Scholar]
- UNDRR (United Nations Office for Disaster Risk Reduction), 2015. Sendai framework for disaster risk reduction 2015-2030, Genève, United Nations, www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf. [Google Scholar]
- UNDRR (United Nations Office for Disaster Risk Reduction), 2018. United Nations Office for Disaster Risk Reduction 2018 annual report, Genève, United Nations. [Google Scholar]
- UNDRR (United Nations Office for Disaster Risk Reduction), 2019a. Global assessment report on disaster risk reduction, Genève, United Nations. [Google Scholar]
- UNDRR (United Nations Office for Disaster Risk Reduction), 2019b. The Sendai framework and the SDGs, Genève, United Nations. [Google Scholar]
- UNU-ESH (United Nations University-Institute for Environment and Human Security), 2021. Interconnected disaster risks [O’Connor J., Eberle C., Cotti D., Hagenlocher M., Hassel J., Janzen S., Narvaez L., Newsom A., Ortiz Vargas A., Schütze S. et al.], Bonn, UNU-ESH, https://i.unu.edu/media/ehs.unu.edu/attachment/23907/UN_Interconnected_Disaster_Risks_Report_210902_Full_Report.pdf. [Google Scholar]
- Villeneuve B., Souchon Y., Usseglio-Polatera P., Ferréol M., Valette L., 2015. Can we predict biological condition of stream ecosystems? A multi-stressors approach linking three biological indices to physico-chemistry, hydromorphology and land use, Ecological Indicators, 48, 88-98, https://doi.org/10.1016/j.ecolind.2014.07.016. [CrossRef] [Google Scholar]
- Von Neumann J., Morgenstern O., 1953 [1re éd. 1944]. Theory of games and economic behaviour, Princeton, Princeton University Press. [Google Scholar]
- Wallemacq P., House R., 2018. Economic losses, poverty and disasters 1998-2017, Louvain-la-Neuve/Genève, CRED (Centre for Research on the Epidemiology of Disasters)/UNISDR (United Nations Office for Disaster Risk Reduction), https://www.unisdr.org/files/61119_credeconomiclosses.pdf. [Google Scholar]
- Wang-Erlandsson L., Tobian A., van der Ent F R.J., Fetzer I., te Wierik S., Porkka, M., Staal A., Jaramillo F., Dahlmann H., Singh C. et al., 2022. A planetary boundary for green water, Nature Reviews Earth & Environment, 3, 380-392, https://doi.org/10.1038/s43017-022-00287-8. [CrossRef] [Google Scholar]
- Wisner B., Gaillard J.-C., Kelman I., 2012. Handbook of hazards and disaster risk reduction, London/New York, Routledge. [CrossRef] [Google Scholar]
- WMO (World Meteorological Organization), 2019. Avoiding the impending crisis in mountain weather, climate, snow, ice and water: pathways to a sustainable global future, WMO High-Mountain Summit, 29-31 October, Genève, WMO. [Google Scholar]
- WMO (World Meteorological Organization), 2021. WMO atlas of mortality and economic losses from weather, climate and water extremes (1970-2019), Genève, WMO, https://library.wmo.int/idurl/4/57564. [Google Scholar]
- Wolfe N.D., Daszak P., Kilpatrick A.M., Burke D.S., 2005. Bushmeat hunting, deforestation, and prediction of zoonotic disease, Emerging Infectious Diseases, 11, 12, 1822-1827, https://doi.org/10.3201/eid1112.040789. [CrossRef] [PubMed] [Google Scholar]
- World Economic Forum, 2020. 15 years of risk: from economic collapse to planetary devastation. Global risks report 2020, Cologny, World Economic Forum, https://www.weforum.org/agenda/2020/01/15-years-risk-economic-collapse-planetary-devastation. [Google Scholar]
- World Economic Forum, 2021. The global risks report 2021, Cologny, World Economic Forum, http://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2021.pdf. [Google Scholar]
- Zgheib T., Giacona F., Granet-Abisset A.-M., Morin S., Eckert N., 2020. One and a half century of avalanche risk to settlements in the upper Maurienne valley inferred from land cover and socio-environmental changes, Global Environmental Change, 65, 102149, https://doi.org/10.1016/j.gloenvcha.2020.102149. [CrossRef] [Google Scholar]
- Zhang T., Wu Q., Zhang Z., 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak, Current Biology, 30, 7, 1346-1351, https://doi.org/10.1016/j.cub.2020.03.022. [CrossRef] [PubMed] [Google Scholar]
- Zscheischler J., Westra S., van den Hurk B.J.J.M., Seneviratne S.I., Ward P.J., Pitman A., AghaKouchak A., Bresch D.N., Leonard M., Wahl T. et al., 2018. Future climate risk from compound events, Nature Climate Change, 8, 469-477, https://doi.org/10.1038/s41558-018-0156-3. [CrossRef] [Google Scholar]
- Zuccaro G., De Gregorio D., Leone M.F., 2018. Theoretical model for cascading effects analyses, International Journal of Disaster Risk Reduction, 30, Part B, 199-215, https://doi.org/10.1016/j.ijdrr.2018.04.019. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.