Free Access
Issue
Nat. Sci. Soc.
Volume 23, Number 1, janvier-mars 2015
Page(s) 42 - 53
DOI https://doi.org/10.1051/nss/2015007
Published online 30 April 2015
  • Aglietta, M., Orléan, A., 2002. La monnaie entre violence et confiance, Paris, Odile Jacob.
  • Anderson, P.W., 1972. More is different, Nature, 177, 393-396.
  • Anderson, C., 2011. The end of theory. The data deluge makes the scientific method obsolete, Wired Magazine, http://www.wired.com/science/discoveries/magazine/16-07/pb_theory.
  • Aubin, J.-P., 1991. Viability theory, Boston, Birkhauser.
  • Bennett, C.H., 1988. Logical depth and physical complexity, in Herken, R. (Ed.), The universal Turing machine. A half-century survey, Oxford, Oxford University Press, 227-257.
  • Berthoz, A., 2009. La simplexité, Paris, Odile Jacob.
  • Boccara, N., 2004. Modeling complex systems, New York, Springer.
  • Boltanski, L., Thévenot, L., 1991. De la justification. Les économies de la grandeur, Paris, Gallimard.
  • Bourgine, P., 2008. Les systèmes complexes obéissent-ils à des lois ?, in Bourgine, P., Chavalarias, D., Cohen-Boulakia, C., Déterminismes et complexités : du physique à l’éthique. Autour d’Henri Atlan, Paris, La Découverte.
  • Celesia, G.G., 2010. Visual perception and awareness. A modular system, Journal of Psychophysiology, 24, 2, 62-67. [CrossRef]
  • Chavalarias, D., 2006. Metamimetic games. Modeling metadynamics in social cognition, Journal of artificial societies and social simulations, 9, 2, http://jasss.soc.surrey.ac.uk/9/2/5.html.
  • Chavalarias, D., Cointet, J.-P., 2008. Bottom up scientific field detection for dynamical and hierarchical science mapping. Methodology and case study, Scientometrics, 75, 1, 37-50, https://hal.inria.fr/file/index/docid/126092/filename/ScientometricsV1.pdf. [CrossRef]
  • Chavalarias, D., Cointet, J.-P., 2013. Phylomemetic patterns in science evolution. The rise and fall of scientific fields, PLoS ONE, 8, 2, e54847, doi:10.1371/journal.pone.0054847. [CrossRef] [PubMed]
  • Damasio, A., 1995. L’erreur de Descartes. La raison des émotions, Paris, Odile Jacob.
  • Davidson, E., Levin, M. (Eds), 2005. Gene regulatory networks, Proceedings of the national academy of sciences of the United States of America, special issue, 102, 14.
  • Decety, J., Jackson, P.L., 2004. The functional architecture of human empathy, Behavioral and cognitive neuroscience reviews, 3, 71-100. [CrossRef] [PubMed]
  • Deffuant, G., 1998. Les modèles cognitifs à l’épreuve des formes du religieux. Proposition de directions de recherche centrées sur l’empathie, Intellectica, 26/27, 89-109.
  • Delahaye, J.-P.,1999. Information, complexité et hasard, Paris, Hermès Science.
  • Dupuy, J.-P., 1992. Introduction aux sciences sociales, Paris, Ellipses.
  • Dupuy, J.-P., 1994. Aux origines des sciences cognitives, Paris, La Découverte.
  • Eber, N., 2004. Théorie des jeux, Paris, Dunod.
  • Edelman, G.M., 1990. The remembered present. A biological theory of consciousness, New York, Basic Books.
  • Étienne, M. (Ed.), 2010. La modélisation d’accompagnement. Une démarche participative en appui au développement durable, Versailles, Quæ.
  • Gazzaniga, M.S., 2005. Forty-five years of split-brain research and still going strong [Review], Nature Reviews Neuroscience, 6, 653-659. [CrossRef] [PubMed]
  • Gallese, V., Goldman, A., 1998. Mirror neurons and the simulation theory of mindreading, Trends in cognitive sciences, 2, 12, 493-501. [CrossRef] [PubMed]
  • Girard, R., 1972. La violence et le sacré, Paris, Grasset.
  • Gell-Mann, M., 1994. Le quark et le jaguar. Voyage au cœur du simple et du complexe, Paris, Flammarion.
  • Grauwin, S., Beslon, G., Fleury, E., Franceschelli, S., Robardet, C., Rouquier, J.B., Jensen, P. 2012. Complex systems science: dreams of universality, interdisciplinarity reality, Journal of the American Society for Information Science and Technology, 63, 7, 1327-1338. [CrossRef]
  • Gribbin, J., 2006. Le chaos, la complexité et l’émergence de la vie, Paris, Flammarion.
  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M, Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modeling of agent-based complex systems. Lessons from ecology, Science, 310, 987-991. [CrossRef] [PubMed]
  • Hacking, I., 1990. The taming of chance, Cambridge, Cambridge University Press.
  • Kolmogorov, A., 1963. On tables of random numbers, Sankhyā, Series A, 25, 369-375. [MathSciNet]
  • Laplace, P.S., 1814. Essai philosophique sur les probabilités, Paris, Courcier.
  • Leibniz, G.W., 1991 [1re éd. : 1714]. La Monadologie, Paris, Librairie générale française.
  • Li, M., Vitanyi, P., 1997 [2nd ed.]. An introduction to Kolmogorov complexity and its applications, Berlin, Springer.
  • Lingnau, A., Gesierich, B., Caramazza, A., 2009. Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans, Proceedings of the national academy of sciences of the Unites States of America, 106, 24, 9925-9930, doi: 10.1073/pnas.0902262106. [CrossRef]
  • Latour, B., 2006. Changer de société, refaire de la sociologie, Paris, La Découverte.
  • Latour, B., Jensen, P., Venturini, T., Grauwin, S., Boullier, D., 2013. Le tout est toujours plus petit que ses parties, Réseaux, 177, 1, 197-232.
  • Lesne, A., 2013. Multiscale analysis of biological systems, Acta Biotheoretica, 61, 1, 3-19. [CrossRef] [PubMed]
  • Lorenz, E.N., 1963. Deterministic non-periodic flow, Science, 20, 130-141.
  • Lorenz, E.N., 1972. Predictability. Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Communication au 139th meeting of the American Association for the Advancement of Science, Boston, December 29, http://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf (communication publiée dans Lorenz, E.N., 1993. Predictability. Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? in Lorenz, E.N., The essence of chaos, Seattle, University of Washington Press).
  • Mandelbrot, B.B., 1982. The fractal geometry of nature, San Francisco, W.H. Freeman.
  • Miller, J.H., Page, S.E., 2007. Complex adaptive systems. An introduction to computational models of social life, Princeton (New Jersey), Princeton University Press.
  • Mitchell, M., 2009. Complexity. A guided tour, New York, Oxford University Press.
  • Müller, J.-P., 2004. Emergence of collective behaviour and problem solving, in Omicini, A., Petta, P., Pitt, J. (Eds), Engineering societies in the agents world IV. 4th International Workshop, ESAW 2003, London, October 29-31, Berlin, New York, Springer, 1-21.
  • Müller, J.-P., Aubert, S., 2013. Incorporating institutions, norms and territories in a generic model to simulate the management of renewable resources, Artificial Intelligence and Law, 21, 1, 47-78, doi: 10.1007/s10506-012-9133-8. [CrossRef]
  • Nagel, T., 1974. What is it like to be a bat?, Philosophical Review, 83, 4, 435-50. [CrossRef]
  • Newman, M.E.J., 2011. Complex systems. A survey, http://arxiv.org/pdf/1112.1440.pdf.
  • Popper, K., 1945. The open society and its enemies, London, Routledge.
  • Ratzé, C., Gillet, F., Müller, J.-P., Stoffel, K., 2007. Simulation modelling of ecological hierarchies in constructive dynamical systems, Ecological complexity, 4, 1/2, 13-25. [CrossRef]
  • Renaut, A., 1989. L’ère de l’individu, Paris, Gallimard.
  • Rizzolatti, G., Craighero, L., 2004. The mirror-neuron system, Annual review of neuroscience, 27, 169-192. [CrossRef] [PubMed]
  • Searle, J., 1995. La redécouverte de l’esprit, Paris, Gallimard.
  • Smith, A., 1798. Théorie des sentiments moraux, Paris, F. Buisson.
  • Smith, A. 1880 [1re éd. : 1776]. Recherches sur la nature et les causes de la richesse des nations, Paris, Guillaumin.
  • Sornette, D., Ouillon, G., 2012. Dragon-kings. Mechanisms, statistical methods and empirical evidence, European Physical Journal Special Topics, 205, 1-26. [CrossRef] [EDP Sciences] [MathSciNet]
  • Tarde, G., 1898. Les lois sociales. Esquisse d’une sociologie, Paris, F. Alcan.
  • Thomas-Vaslin, V., Six, A., Ganascia, J.G., Bersini, H., 2013. Dynamical and mechanistic reconstructive approaches of T lymphocyte dynamics. Using visual modelling languages to bridge the gap between immunologists, theoreticians and programmers, Frontiers in immunology, 4, 300, 1-6. [CrossRef] [PubMed]
  • Thurner, S., Szell, M., Sinatra, R., 2012. Emergence of good conduct, scaling and zipf laws in human behavioral sequences in an online world, PLoS ONE, 7, 1, e29796, doi:10.1371/journal.pone.0029796. [CrossRef] [PubMed]
  • Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J., Balcan, D., 2012. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC Medicine, 10, 165. [CrossRef] [PubMed]
  • Todorov, T., 1998. Le jardin imparfait. La pensée humaniste en France, Paris, Grasset.
  • Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 2, 42, 230-265. [CrossRef] [MathSciNet]
  • Van den Broeck, W., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V., Vespignani, A., 2011. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale, BMC Infectious Diseases, 11, 37.
  • Varenne, F., 2008. Modèles et simulations. Pluriformaliser, simuler, remathématiser, Matière Première, 3, 153-180.
  • Zeigler, B., 1987. Hierarchical, modular discrete-event modelling in an object-oriented environment, Simulation, 49, 5, 219-230. [CrossRef]
  • Zwirn, H., 2006. Les systèmes complexes. Mathématiques et biologie, Paris, Odile Jacob.
  • Zwirn, H., Weisbuch, G., 2010. Qu’appelle-t-on aujourd’hui sciences de la complexité ?, Paris, Vuibert.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.