Open Access
Issue
Nat. Sci. Soc.
Volume 29, Number 2, Avril/Juin 2021
Page(s) 223 - 232
Section Regards – Focus
DOI https://doi.org/10.1051/nss/2021036
Published online 10 September 2021
  • Arsevska E., Roche M., Hendrikx P., Chavernac D., Falala S., Lancelot R., Dufour B., 2016. Identification of terms for detecting early signals of emerging infectious disease outbreaks on the web, Computers and Electronics in Agriculture, 123, 104-115, https://doi.org/10.1016/j.compag.2016.02.010. [CrossRef] [Google Scholar]
  • Aubin S., Hamon T., 2006. Improving term extraction with terminological resources, in Salakoski T., Ginter F., Pyysalo S., Pahikkala T. (Eds), Advances in natural language processing, 5th international conference, FinTAL 2006 Turku, Finland, August 23-25, Proceedings, Springer, 380-387. [Google Scholar]
  • Barbier M., Cointet J.-P., 2012. Reconstruction of socio-semantic dynamics in sciences-society networks: methodology and epistemology of large textual corpora analysis. Communication au Science and Democracy Network Annual Meeting, 25-27 juin, Paris. [Google Scholar]
  • Bartol T., 2009. Assessment of food and nutrition related descriptors in agricultural and biomedical thesauri, in Sartori F., Sicilia M.A., Manouselis N. (Eds), Metadata and semantic research. Proceedings of the third international conference MTSR 2009, October 1-2, Milan, Italy, Springer, 294-305. [Google Scholar]
  • Batifol V., Aubin S., Hazard L., Theau J.-P., Bouffartigue C., Magrini M.-B., 2020. Thésaurus d’agroécologie : une approche par les usages et avis d’experts, Cahiers Agricultures, 29, 7, https://doi.org/10.1051/cagri/2020004. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bonin M., Roche M., 2019. Analyse des champs lexicaux des acteurs du territoire à partir de corpus textuels sur le Web : le cas des controverses autour de l’épandage aérien contre la cercosporiose du bananier en Guadeloupe, in Roche C. (Ed.), TOTh 2019. Terminologie & ontologie : théories et applications, Chambéry, Presses universitaires Savoie Mont Blanc, 293-307. [Google Scholar]
  • Chateauraynaud F., 2003. Prospéro. Une technologie littéraire pour les sciences humaines, Paris, CNRS Éditions. [Google Scholar]
  • Daille B., 1994. Approche mixte pour l’extraction automatique de terminologie : statistiques lexicales et filtres linguistiques. Thèse de doctorat en sciences appliquées, Paris, Université Paris 7. [Google Scholar]
  • David S., Plante P., 1990. De la nécessité d’une approche morphosyntaxique dans l’analyse de textes, Intelligence artificielle et sciences cognitives au Québec, 3, 140-154. [Google Scholar]
  • Dobrov B., Loukachevitch N., 2011. Combining evidence for automatic extraction of terms, in Kuznetsov S.O., Mandal D.P., Kundu M.K., Pal S.K. (Eds), Patten recognition and machine intelligence. Proceedings of the 4th international conference PReMI 2011, June 27 − July 1, Moscow, Russia, Springer, 235-241. [Google Scholar]
  • Fize J., Roche M., Teisseire M., 2019. Mapping heterogeneous textual data: a multidimensional approach based on spatiality and theme, in El Yacoubi S., Bagnoli F., Pacini G. (Eds), Internet science. 6th international conference, INSCI 2019, Perpignan, France, December 2-5, Proceedings, Springer, 310-317, https://doi.org/10.1007/978-3-030-34770-3_25. [Google Scholar]
  • Frantzi K.T., Ananiadou S., Mima H., 2000. Automatic recognition of multi-word terms: the C-value/NC-value method, International Journal on Digital Libraries, 3, 2, 115-130, https://doi.org/10.1007/s007999900023. [CrossRef] [Google Scholar]
  • Gauld C., Micoulaud-Franchi J.A., 2020. Analyse en réseau par fouille de données textuelles systématique du concept de psychiatrie personnalisée et de précision, L’Encéphale, https://doi.org/10.1016/j.encep.2020.08.008. [Google Scholar]
  • Hazem A., Daille B., 2014. Semi-compositional method for synonym extraction of multi-word terms, in Calzolari N., Choukri K., Declerck T., Loftsson H., Maegaard B., Mariani J., Moreno A., Odijk J., Piperidis S. (Eds), Proceedings of the ninth international conference on language resources and evaluation (LREC 2014), European Language Resources Association, 2202-2207. [Google Scholar]
  • Kennedy A., 2010. Automatically expanding the lexicon of Roget’s thesaurus, in Farzindar A., Kešelj V. (Eds), Advances in artificial intelligence. Canadian AI 2010. Lecture notes in computer science, Springer, 410-413, https://doi.org/10.1007/978-3-642-13059-5_58. [Google Scholar]
  • Kergosien É., Maurel P., Roche M., Teisseire M., 2015. SENTERRITOIRE pour la détection d’opinions liées à l’aménagement d’un territoire, Revue internationale de géomatique, 25, 1, 11-34, https://doi.org/10.3166/RIG.25.11-34. [CrossRef] [Google Scholar]
  • Kyriacopoulou T., Martineau C., Martinez C., 2018. UNITEX/GRAMLAB : plateforme libre basée sur des lexiques et des grammaires pour le traitement des corpus textuels, Revue des nouvelles technologies de l’information, vol. « Extraction et gestion des connaissances (EGC 2018) », 467-470. [Google Scholar]
  • Laporte M.A., Mougenot I., Garnier E., 2012. ThesauForm-Traits: a web based collaborative tool to develop a thesaurus for plant functional diversity research, Ecological informatics, 11, 34-44, https://doi.org/10.1016/j.ecoinf.2012.04.004. [CrossRef] [Google Scholar]
  • Lossio-Ventura J.A., Jonquet C., Roche M., Teisseire M., 2016. Biomedical term extraction: overview and a new methodology, Information Retrieval Journal, 19, 1-2, 59-99, https://doi.org/10.1007/s10791-015-9262-2. [CrossRef] [Google Scholar]
  • Malanski P.D., Dedieu B., Schiavi S., 2021. Mapping the research domains on work in agriculture. A bibliometric review from Scopus database, Journal of Rural Studies, 81, 305-314, https://doi.org/10.1016/j.jrurstud.2020.10.050. [CrossRef] [Google Scholar]
  • Martin P., Helmer T., Rabatel J., Roche M., 2021. KEOPS: Knowledge ExtractOr Pipeline System, in Cherfi S., Perini A., Nurcan S. (Eds), Research challenges in information science. 15th international conference RCIS 2021, Limassol, Cyprus, May 11-14, Proceedings, Springer, 561-567. [Google Scholar]
  • Nédellec C., Golik W., Aubin S., Bossy R., 2010. Building large lexicalized ontologies from text: a use case in automatic indexing of biotechnology patents, in Cimiano P., Pinto H.S. (Eds), Knowledge engineering and management by the masses. EKAW 2010, Springer, 514-523, https://doi.org/10.1007/978-3-642-16438-5_41. [Google Scholar]
  • Névéol A., Grosjean J., Darmoni S.J., Zweigenbaum P., 2014. Language resources for French in the biomedical domain, in Calzolari N., Choukri K., Declerck T., Loftsson H., Maegaard B., Mariani J., Moreno A., Odijk J., Piperidis S. (Eds), Proceedings of the ninth international conference on language resources and evaluation (LREC 2014), European Language Resources Association, 2146-2151. [Google Scholar]
  • Paumier S., 2020. Unitex 3.2. Manuel d’utilisation, Université Paris-Est-Marne-la-Vallée, https://unitexgramlab.org/releases/3.2/man/Unitex-GramLab-3.2-usermanual-fr.pdf. [Google Scholar]
  • Pazienza M.T., Stellato A. (Eds), 2012. Semi-automatic ontology development. Processes and resources, Hershey, IGI Global. [CrossRef] [Google Scholar]
  • Piskorski J., Haneczok J., Jacquet G., 2020. New benchmark corpus and models for fine-grained event classification: to BERT or not to BERT?, in Scott D., Bel N., Zong C. (Eds), Proceedings of the 28th international conference on computational linguistics, December 8-13, Barcelona, International Committee on Computational Linguistics, 6663-6678. [Google Scholar]
  • Roche M., 2020. How to define co-occurrence in a multidisciplinary context?, Informatica, 44, 3, 387-393, https://doi.org/10.31449/inf.v44i3.2996. [CrossRef] [Google Scholar]
  • Roche M., Arsevska E., 2018. PADI-web: ASF corpora, https://doi.org/10.18167/DVN1/POIZMA, CIRAD Dataverse. [Google Scholar]
  • Roche M., Fortuno S., Lossio-Ventura J.A., Akli A., Belkebir S., Lounis T., Toure S., 2015. Extraction automatique des mots-clés à partir de publications scientifiques pour l’indexation et l’ouverture des données en agronomie, Cahiers Agricultures, 24, 5, 313-320, https://doi.org/10.1684/agr.2015.0773. [Google Scholar]
  • Roche M., Teisseire M., Shrivastava G., 2017. Valorcarn-TETIS: candidates for OTR (Ontological and Terminological Resource), https://doi.org/10.18167/DVN1/KNFAGG, CIRAD Dataverse. [Google Scholar]
  • Roche M., Coste C., Falala S., Touré I., Bonnet P., 2018. Enrichissement et consolidation de ressources lexicales liées à la mobilité par des approches de fouille de textes, in Roche C. (Ed.), TOTh 2018. Terminologie & ontologie : théories et applications, Chambéry, Presses universitaires Savoie Mont Blanc. [Google Scholar]
  • Roche M., Helmer T., Martin P., Chaminuka P., Dimitriou I., Csorba A., Lindsten A., Lundén T., van Boheemen P., 2020. LEAP4FNSSA (WP3 − KMS): Terminology for KEOPS, https://doi.org/10.18167/DVN1/GQ8DPL, CIRAD Dataverse. [Google Scholar]
  • Salton G., McGill M.J., 1983. Introduction to modern information retrieval, New York, McGraw-Hill. [Google Scholar]
  • Silberztein M., 2015. La formalisation des langues. L’approche de NooJ, Londres, ISTE Éditions. [Google Scholar]
  • Smadja F., 1993. Retrieving collocations from text: Xtract, Computational Linguistics, 19, 1, 143-177. [Google Scholar]
  • Turenne N., Barbier M., 2004. BELUGA : un outil pour l’analyse dynamique des connaissances de la littérature scientifique d’un domaine. Première application au cas des maladies à prions, in Hébrail G., Lebart L., Petit J.-M. (Eds), Extraction et gestion de connaissances (EGC 2004). Actes des quatrièmes journées « Extraction et gestion des connaissances », 20-23 janvier, Clermont-Ferrand, France, Toulouse, Éditions Cépaduès, 423-428. [Google Scholar]
  • Vakkari P., 2010. How specific thesauri and a general thesaurus cover lay persons’ vocabularies concerning health, nutrition and social services, in Gnoli C., Mazzocchi F. (Eds), Paradigms and conceptual systems in knowledge organization. Proceedings of the eleventh international ISKO conference, 23-26 February, Rome, Italy, Würzburg, Ergon Verlag, 299-307. [Google Scholar]
  • Valentin S., Arsevska E., Falala S., De Goër J., Lancelot R., Mercier A., Rabatel J., Roche M., 2020. PADI-web: a multilingual event-based surveillance system for monitoring animal infectious diseases, Computers and Electronics in Agriculture, 169, 105163, https://doi.org/10.1016/j.compag.2019.105163. [CrossRef] [Google Scholar]
  • Valentin S., Mercier A., Lancelot R., Roche M., Arsevska E., 2021. Monitoring online media reports for early detection of unknown diseases: insight from a retrospective study of COVID-19 emergence, Transboundary and Emerging Diseases, 68, 981-986, https://doi.org/10.1111/tbed.13738. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.