Free Access
Issue
Nat. Sci. Soc.
Volume 23, Number 4, October-December 2015
Page(s) 331 - 342
DOI https://doi.org/10.1051/nss/2015058
Published online 19 January 2016
  • Abe, M., McCall, P., Lenhart, A., Villegas, E., Kroeger, A., 2005. The Buen Pastor cemetery in Trujillo, Venezuela: Measuring dengue vector output from a public area, Tropical Medicine & International Health, 10, 6, 597-603. [CrossRef] [Google Scholar]
  • Almeida, S.J. de, Ferreira, R., Eiras, Á., Obermayr, R., Geierd, M., 2010. Multi-agent modeling and simulation of an Aedes aegypti mosquito population, Environmental Modelling & Software, 25, 12, 1490-1507. [CrossRef] [Google Scholar]
  • Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control, Oxford, Oxford University Press. [Google Scholar]
  • Beebe, N., Cooper, R., Mottram, P., Sweeney, A., 2009. Australia’s dengue risk driven by human adaptation to climate change, PLoS Neglected Tropical Diseases, 3, 5, e429. [CrossRef] [PubMed] [Google Scholar]
  • Bhatt, S., Gething, P., Brady, O., Messina, J., Farlow, A., Moyes, C., Drake, J., Brownstein, J., Hoen, A., Sankoh, O., Myers, M., George, D., Jaenisch, T., Wint, G., Simmons, C., Scott, T., Farrar, J., Hay, S. 2013. The global distribution and burden of dengue, Nature, 496, 504-507, doi: 10.1038/nature12060. [CrossRef] [PubMed] [Google Scholar]
  • Christophers, S.R., 1960. Aedes Aegypti (L.): The Yellow Fever Mosquito, Cambridge, Cambridge University Press. [Google Scholar]
  • Cummings, D., Irizarry, R., Huang, N., Endy, T., Nisalak, A., Ungchusak, K., Burke, D., 2004. Travelling waves in the occurrence of dengue hemorrhagic fever in Thailand, Nature, 427, 6972, 344-347. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cummins, B., Cortez, R., Foppa, I.M., Walbeck, J., Hyman, J.M., 2012. A spatial model of mosquito host-seeking behavior, PLoS Computational Biology, 8, 2, e1002500. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Daudé, É., Vaguet, A., 2015. Surveillance, contrôle et épidémies de dengue en Inde : qui a échoué ?, L’Espace Politique, 26, 2, doi: 10.4000/espacepolitique.3485. [Google Scholar]
  • De Mattos Almeida, M.C., Caiaffa, W.T., Assunção, R., Proietti, F., 2007. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance, Journal of Urban Health : Bulletin of the New York Academy of Medicine, 84, 3, 334-345. [CrossRef] [PubMed] [Google Scholar]
  • Descloux, E., Mangeas, M., Lengaigne, M., Leroy, A., Menkes, C., Tehei, T., Guillaumot, L., Teurlai, M., Gourinat, A.-C., Benzler, J., 2012. Climate-based models for understanding and forecasting dengue epidemics, PLoS Neglected Tropical Diseases, 6, 2, e1470, doi: 10.1371/journal.pntd.0001470. [CrossRef] [PubMed] [Google Scholar]
  • Deubel, V., Rodhain, F., 1999. Variations climatiques et dengue : impacts directs et indirects, Médecine et Maladies Infectieuses, 29, 5, 289-295. [CrossRef] [Google Scholar]
  • Eisen, L., Lozano-Fuentes, S., 2009. Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue, PLoS Neglected Tropical Diseases, 3, 4, e411, doi: 10.1371/journal.pntd.0000411. [CrossRef] [PubMed] [Google Scholar]
  • Eisenberg, J., Desai, M., Levy, K., Bates, S., Liang, S., Naumoff, K., Scott, J., 2007. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research, Environ Health Perspectives, 115, 8, 1216-1223. [CrossRef] [Google Scholar]
  • Ellis, A., Garcia, A., Focks, D., Morrison, A., Scott, T., 2011. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control, The American Journal of Tropical Medicine and Hygiene, 85, 2, 257-264. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Fontenille, D., Lagneau, C., Lecollinet, S., Lefait-Robin, R., Setbon, M., Tirel, B., Yebakima, A., 2009. La Lutte antivectorielle en France, Marseille, IRD Éditions, coll. Expertise collégiale. [Google Scholar]
  • Fuller, D., Troyo, A., Calderon-Arguedas, O., Beier, J., 2010. Dengue vector larval habitats in an urban environment of Costa Rica analysed with ASTER and QuickBird imagery, International Journal of Remote Sensing, 31, 1, 3-11. [CrossRef] [Google Scholar]
  • Getis, A., 1999. Spatial statistics, in Longley, P., Goodchild, M., Maguire, G., Rhind, D. (Ed.), Geographic Information Systems, New York, John Wiley and Sons, 239-251. [Google Scholar]
  • Grange, L., Simon-Loriere, E., Sakuntabhai, A., Gresh, L., Paul, R., Harris, E., 2014. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections, Frontiers in Immunology, 5, 280. [CrossRef] [PubMed] [Google Scholar]
  • Gubler, D., 1998. Population growth, urbanization, automobiles and airplanes: The dengue connection, in Greenwood, B., De Cock, K., (Ed.), New and Resurgent Infections: Prediction, Detection and Management of Tomorrow’s Epidemics, London, London School of Hygiene and Tropical Medicine, 117-129. [Google Scholar]
  • Gubler, D., 2011. Dengue, urbanization and globalization: The unholy Trinity of the 21st century, Tropical Medicine and Health, 39, 4, 3-11. [CrossRef] [Google Scholar]
  • Gubler, D., Kuno, G., (Ed.), 1997. Dengue and Dengue Hemorrhagic Fever, Wallingford, UK, CAB International. [Google Scholar]
  • Guzman, M., Halstead, S., Artsob, H., Buchy, P., Farrar, J., Gubler, D., Hunsperger, E., Margolis, H., Martínez, E., Nathan, M., Pelegrino, J., 2010. Dengue : a continuing global threat, Nature, 8, 12, doi.org/10.1038/nrmicro2460. [Google Scholar]
  • Hales, S., de Wet, N., Maindonald, J., Woodward, A., 2002. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model, Lancet, 360, 9336, 830-834. [CrossRef] [PubMed] [Google Scholar]
  • Handschumacher, P., Hervouet, J.-P., 2004. Des systèmes pathogènes à la santé publique, une nouvelle dimension pour la géographie de la santé tropicale, Autrepart, 29, 47-63. [CrossRef] [Google Scholar]
  • Harrington, L., Scott, T., Lerdthusnee, K., Coleman, R., Costero, A., Clark, G., Jones, J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., Edman, J., 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities, American Society of Tropical Medicine and Hygiene, 72, 2, 209-220. [Google Scholar]
  • Hartemink, N., Vanwambeke, S., Purse, B., Gilbert, M., Van Dyck, H., 2014. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks, Biological Reviews, 32. [Google Scholar]
  • Huy, N.T., Van Giang, T., Thuy, D.H., Kikuchi, M., Hien, T.T., Zamora, J., Hirayama, K., 2013. Factors associated with dengue shock syndrome: A systematic review and meta-analysis, PLoS Neglected Tropical Diseases, 7, 9, e2412, doi: 10.1371/journal.pntd.0002412. [CrossRef] [PubMed] [Google Scholar]
  • Isidoro, C., Fachada, N., Barata, F., Rosa, A., 2009. Agent-based model of Aedes aegypti population dynamics, Progress in Artificial Intelligence, Berlin, Springer-Verlag, 53-64. [Google Scholar]
  • Jaenisch, T., IDAMS, Sakuntabhai, A., DENFREE, Wilder-Smith, A., DengueTools, 2013. Dengue research funded by the European Commission-scientific strategies of three European dengue research consortia, PLoS Neglected Tropical Diseases, 7, 12, e2320, doi: 10.1371/journal.pntd.0002320. [CrossRef] [PubMed] [Google Scholar]
  • Jetten, T.H., Focks, D.A., 1997. Potential changes in the distribution of dengue transmission under climate warming, The American Journal of Tropical Medicine and Hygiene, 57, 3, 285-297. [CrossRef] [PubMed] [Google Scholar]
  • Joshi, V., Mourya, D., Sharma, R., 2002. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes, The American Journal of Tropical Medicine and Hygiene, 67, 158-161. [CrossRef] [PubMed] [Google Scholar]
  • Kan, C., Lee, P., Wen, T., Chao, D., Wu, M., Lin, N., Scott Y., Shang, C., Fan, I., Shu, P., Huang, J., King, C., Pai, L., 2008. Two clustering diffusion patterns identified from the 2001-2003 dengue epidemic, Kaohsiung, Taiwan, The American Journal of Tropical Medicine and Hygiene, 79, 3, 344-352. [PubMed] [Google Scholar]
  • Kitron, U., 1998. Landscape ecology and epidemiology of vector-borne diseases: Tools for spatial analysis, Journal of Medical Entomology, 35, 435-445. [CrossRef] [PubMed] [Google Scholar]
  • Lambrechts, L., Paaijmans, K., Fansiri, T., Carrington, L., Kramer, L., Thomas, M., Scott, T., 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proceedings of the National Academy of Sciences of the United States of America, 108, 18, 7460-7465. [Google Scholar]
  • Langlois, P., 2010. Simulation des systèmes complexes en géographie : fondements théoriques et applications, Paris, Hermès-Lavoisier. [Google Scholar]
  • Lourenço, J., Recker, M., 2013. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Computational Biology, 9, 10, e1003308. [CrossRef] [PubMed] [Google Scholar]
  • Lwin, M., Vijaykumar, S., Fernando, O., Cheong, S., Rathnayake, V., Lim, G., Theng, Y., Chaudhuri, S., Foo, S., 2013. A 21st century approach to tackling dengue: Crowdsourced surveillance, predictive mapping and tailored communication, Acta Tropica, 130, 100-107. [CrossRef] [PubMed] [Google Scholar]
  • Maciel-de-Freitas, R., Koella, J.C., Lourenco-de-Oliveira, R., 2011. Lower survival rate, longevity and fecundity of Aedes aegypti females orally challenged with dengue virus serotype 2, Transactions of the Royal Society of Tropical Medicine and Hygiene, 105, 452-458. [CrossRef] [PubMed] [Google Scholar]
  • Magori, K., Legros, M., Puente, M., Focks, D., Scott, T., Lloyd, A., Gould, F. 2009. Skeeter Buster: A stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLoS Neglected Tropical Diseases, 3, 9, e508, doi: 10.1371/journal.pntd.0000508. [CrossRef] [PubMed] [Google Scholar]
  • Maneerat, S., Daudé, É., 2015. An agent-based model of dengue vector, Aedes aegypti, to understand the spatio-temporal heterogeneity of mosquito populations, Ecological Modelling, à paraître. [Google Scholar]
  • Mpolya, E.A., Yashima, K., Ohtsuki, H., Sasaki, A., 2014. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters, Journal of Theoretical Biology, 343, 120-126. [CrossRef] [PubMed] [Google Scholar]
  • OMS, 2012a. Global strategy for dengue prevention and control 2012-2020, Genève (online: http://www.who.int/denguecontrol/9789241504034/en/index.html). [Google Scholar]
  • OMS, 2012b. Handbook for clinical management of dengue, Genève (online: http://www.who.int/denguecontrol/9789241504713/en/). [Google Scholar]
  • Ooi, E., Goh, K., Gubler, D., 2006. Dengue prevention and 35 years of vector control in Singapore, Emerging Infectious Diseases, 12, 887-893. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ordóñez-Gonzalez, J.G., Mercado-Hernandez, R., Flores-Suarez, A.E., Fernández-Salas, I., 2001. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in Northeastern Mexico, Journal of American Mosquito Control Association, 17, 93-97. [Google Scholar]
  • PAHO, 1997. Re-emergence of dengue in the Americas, Epidemiological Bulletin, 18, 2. [Google Scholar]
  • Palaniyandi, M., 2014. Web mapping GIS: GPS under the GIS umbrella for Aedes species dengue and chikungunya vector mosquito surveillance and control, International Journal of Mosquito Research, 1, 3, 18-25. [Google Scholar]
  • Picheral, H., 1983. Complexes et systèmes pathogènes : approche géographique. De l’épidémiologie à la géographie humaine, Travaux et Documents de Géographie Tropicale, 48, 5-22. [Google Scholar]
  • Rodhain, F., Rosen, L., 1997. Mosquito vectors and dengue virus-vector relationships, in Gubler, D., Kuno, G., (Ed.), Dengue and Dengue Haemorrhagic Fever, London, CAB International, 45-60. [Google Scholar]
  • Rogers, D., Randolph, S., 2006. Climate change and vector-borne diseases, Advances in Parasitology, 62, 345-381. [CrossRef] [PubMed] [Google Scholar]
  • Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., Scavuzzo, C., 2007. Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina, Acta Tropica, 103, 1, 1-13. [CrossRef] [PubMed] [Google Scholar]
  • Sabchareon, A., Wallace, D., Sirivichayakul, C., Limkittikul, K., Chanthavanich, P., Suvannadabba, S., Jiwariyavej, V., Dulyachai, W., Pengsaa, K., Wartel, T.A., Moureau, A., Saville, M., Bouckenooghe, A., Viviani, S., Tornieporth, N.G., Lang, J, 2012. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomized, controlled phase 2b trial, Lancet, 380, 1559-1567. [CrossRef] [PubMed] [Google Scholar]
  • Salje, H., Lessler, J., Endy, T., Curriero, F., Gibbons, R., Nisalak, A., Nimmannitya, S., Kalayanarooj, S., Jarman, R., Thomas, S., Burke, D., Cummings, D., 2012. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population, Proceedings of the National Academy of Sciences of the United States of America, 109, 9535-9538. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt, W.-P., Suzuki, M., Thiem, V., White, R., Tsuzuki, A., Yoshida, L., Yanai, H., Haque, U., Tho, L., Anh, D., Ariyoshi, K., 2011. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis, PLoS Medecine, 8, e1001082, doi: 10.1371/journal.pmed.1001082. [CrossRef] [Google Scholar]
  • Setbon, M., Raude, J., 2009. Population response to the risk of vector-borne diseases: lessons learned from socio-behavioural research during large-scale outbreaks, Emerging Health Threats Journal, 2, doi.org/10.3402/ehtj.v2i0.7083. [Google Scholar]
  • Sharma, Y., Kaur, M., Singh, S., Pant, L., Kudesia, M., Jain, S., 2012. Seroprevalence and trend of dengue cases admitted to a government hospital, Delhi - 5-year study (2006-2010): A look into the age shift, International Journal of Preventive Medicine, 3, 8, 537-543. [PubMed] [Google Scholar]
  • Singh, R., Mittal, P., Yadav, N., Gehlot, O., Dhiman, R., 2011. Aedes aegypti indices and KAP study in Sangam Vihar, south Delhi, during the XIX Commonwealth Games, New Delhi, 2010, Dengue Bulletin, 35, 131-140. [Google Scholar]
  • Stoddard, S.T., Forshey, B., Morrison, A., Paz-Soldan, V., Vazquez-Prokopec, G., Astete, H., Reiner, R., Vilcarromero, S., Elder, J., Halsey, E., Kochel, T., Kitron, U., Scott, T., 2013. House-to-house human movement drives dengue virus transmission, Proceedings of the National Academy of Sciences of the United States of America, 110, 3, 994-999. [Google Scholar]
  • Tatem, A.J., Rogers, D., Hay, S.I., 2006. Global transport networks and infectious disease spread, Advances in Parasitology, 62, 293-343. [Google Scholar]
  • Telle, O., 2011. Le système indien de surveillance des maladies infectieuses face au risque denguien : croyances et actions de luttes sur les espaces endémiques, Espace Populations et Sociétés, 1, 47-62. [CrossRef] [Google Scholar]
  • Thammapalo, S., Chongsuvivatwong, V., Geater, A., Dueravee, M., 2008. Environmental factors and incidence of dengue fever and dengue hemorrhagic fever in an urban area, Southern Thailand, Epidemiology and Infection, 136, 135-143, doi:10.1017/S0950268807008126. [CrossRef] [PubMed] [Google Scholar]
  • Treuil, J.-P., Drogoul, A., Zucker, J.-D., 2008. Modélisation et simulation à base d’agents : exemples commentés, outils informatiques et questions théoriques, Paris, Dunod. [Google Scholar]
  • Tun-Lin, W., Lenhart, A., Nam, V., Rebollar-Tellez, E., Morrison, A., Barbazan, P., Cote, M., Midega, J., Sanchez, F., Manrique-Saide, P., Kroeger, A., Nathan, M., Meheus, F., Petzold, M., 2009. Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: A multi-country non-inferiority cluster randomized trial, Tropical Medicine and International Health, 14, 9, 1143-1153. [CrossRef] [Google Scholar]
  • Vezzani, D., Rubio, A., Velazquez, S., Schweigmann, N., Wiegand, T., 2005. Detailed assessment of microhabitat suitability for Aedes aegypti in Buenos Aires, Argentina, Acta Tropica, 95, 123-131. [CrossRef] [PubMed] [Google Scholar]
  • Watts, D., Burke, D., Harrison, B., Whitmire, R., Nisalak, A., 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, The American Journal of Tropical Medicine and Hygiene, 36, 143-152. [CrossRef] [PubMed] [Google Scholar]
  • Weaver, S., Vasilakis, N., 2009. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease, Infections, Genetics and Evolution, 9, 523-540. [CrossRef] [Google Scholar]
  • Yang, H., Macoris, M., Galvani, K., Andrighetti, M., Wanderley, D., 2009. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, 137, 8, 188-202. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.